Extracorporeal support: Overview of Different Modalities to Support Heart Failure in Children

Josée Gaudreault, Advanced Practice Nurse
Montreal Children’s Hospital
McGill University Health Centre
Canada
Outline

• Overview
• Heart failure in children
• ECLS
 • VA ECMO
 • Ventricular Assist Devices in children
• Future directions
Heart failure in children

- “A person has heart failure when his heart is unable to pump enough blood around to supply the oxygen the body needs”. World Health Organization
- “For a child to grow and develop, the heart needs to maintain normal pump function, to provide optimal blood flow throughout the body”. American Heart Association

- 2 types
 - Over-circulation failure 1% of newborn
 - Pump failure (infection, valve defect, arrhythmias, drugs…)

- Signs and symptoms
 - Non-specific
Nomenclature

• Extracorporeal support (ECLS)
 1. Extracorporeal Membrane Oxygenation (ECMO)
 • Veno-venous VV
 • Veno-arterial VA
 2. Ventricular Assist Devices (VAD)
 3. Cardiopulmonary Bypass (CPB)
Extracorporeal Life Support (ECLS)

- Offered to patients that are likely to die from the primary disease despite optimal conventional therapy
- No specific criteria
- Survival rate of ECMO from ELSO registry (JAN 07)
 - Neonatal respiratory failure 76%
 - Pediatric respiratory failure 56%
 - Adult respiratory failure 51%
 - Neonatal cardiac failure 38%
 - Pediatric cardiac failure 44%
 - Adult cardiac failure 32%
VA ECMO - Indications

- Inability to maintain cardiac output despite maximal inotropic support
- As a bridge to recovery
- As a bridge to cardiac transplantation
- Heart failure from various causes
 - Post-operative complications of a repair of congenital heart defect
 - Unable to wean from Cardiopulmonary Bypass (CPB)
 - Low Cardiac Output Syndrome (LCOS)
 - Cardiomyopathy - Myocarditis - Arrhythmias
- ECPR – Extracorporeal Cardiopulmonary Resuscitation
Contraindications

- End-stage irreversible and inoperable disease
- Significant neurologic impairment
- MultiSystem Organ Failure (MSOF)
- Uncontrolled bleeding
- Limited vascular access

***RELATIVE
It remains a case by case discussion among the ECMO team
VA circuit

VENOARTERIAL ECMO CIRCUIT

- CO₂
- O₂ Blender
- Membrane Oxygenator
- Pre-Membrane Pressure Monitor
- Pump
- Venous Reservoir
- Heat Exchanger
- Post-Membrane Pressure Monitor
- Arterial Cannula
- Fluids
- Heparin
VA ECMO

- Different than CPB
 - Venous drainage is limited to the amount of flow needed
- Circuit blood flow = 30-80% of cardiac output
- Maximize O_2 delivery
 - Optimal hematocrit
 - Fully saturated hemoglobin
- Allow for decreased ventilatory support
 - Lung-protective ventilatory strategy
- Allow for weaning of inotropes and vasopressors
- Decompression of left atrium
- Diuresis may be supported by the system
Disadvantages and complications

- Ligation of carotid artery
- Decreased oxygenation to coronaries
- Risks of air or clot embolization
- Risks of bleeding

- Duration of ECMO depends on
 - Recovery
 - Transplantation
 - Related complications
Ventricular Assist Devices (VAD)
Ventricular Assist Devices (VAD)

- 2 different types

<table>
<thead>
<tr>
<th>Pulsatile</th>
<th>Non-pulsatile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological</td>
<td>Less physiological</td>
</tr>
<tr>
<td>Examples in pediatrics</td>
<td>Smaller in size – smaller pt</td>
</tr>
<tr>
<td>Berlin heart</td>
<td>No valves</td>
</tr>
<tr>
<td>Thoratec</td>
<td>Less expensive – more durable</td>
</tr>
<tr>
<td></td>
<td>Examples in pediatrics</td>
</tr>
<tr>
<td></td>
<td>Micromed DeBakey</td>
</tr>
<tr>
<td></td>
<td>Jarvik 2000 IVAS</td>
</tr>
</tbody>
</table>
Ventricular Assist Devices in children

- Berlin heart
 - PULSATILE
 - Pneumatically driven blood pump
 - Univentricular or biventricular
- To maintain the cardiovascular system and improve the pt’s condition
 - Bridge to transplantation
 - Bridge to recovery
The Berlin heart

- **Blood pumps**
 - Membrane separates blood from air
- **4 cannulas (titanium)**
 - Atria
 - Great arteries
- **Valves (unidirectional flow)**
- **Driving unit**
- **Different sizes**
Management of the Berlin heart

- Assessment of cardiac output \(\text{CO} = \text{HR} \times \text{SV} \)
 - Preload (filling of the pumps)
 - Afterload (signs of perfusion)
 - Contractility (external pumps!!!)
 - ECG \(\neq \) pulse
 - Pump rate (and pulse) depends on the machine!
- Anticoagulation
- By the perfusionist!
Risks and complications

- Bleeding
- Infections
- Clots or fibrin deposits in cannulas or pumps
- Insufficient cardiac output - LCOS
- Duration
 - Recovery
 - Transplantation
 - Complications
Limited experience

- Well recognized VAD
 - > 226 children 1990-2006
- Very limited neonatal experience worldwide
 - Guarded prognosis
 - Promising device
- In Canada, still case by case decision
- 3 pediatric cases at the MCH
 - 2002 – youngest in North-America 26 mo
 - 33% survival
 - No neonatal experience
- 4 centres in Canada
Micromed DeBakey

- Axial pump – NON-PULSATILE
- Developed in cooperation with the NASA
- FDA approved in the USA
- Age 5 to 16 yo
- BSA > 0.7m²
Micromed DeBakey

Advantages
- Small size and light weight
- Low infection rates
- Easy to implant
- Blood flow probe
- Children device available
- Silent compared to others
- Mobility + QOL

Disadvantages
- Pediatric use limited to 5-16 years of age
- Non-pulsatile
- No experience in Canada
Future directions

- Research and development of VAD for infants and neonates
- Promotion of organ donation
- Accessibility of devices in different part of the world
- IABP in children?
- Destination therapy: Mechanical heart?
Intra-aortic balloon pump

- Therapy well used in adult
 - Developed in children 1989
- Principles
 - Balloon placed in descending aorta filled with helium
 - Deflated during systole
 - It creates a vacuum effect and reduces afterload
 - Inflated during diastole
 - It creates better coronary perfusion
 - Challenges to time with cardiac cycle
Advantages and disadvantages

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to install</td>
<td>Timing of inflation and deflation is difficult</td>
</tr>
<tr>
<td>Simple to use</td>
<td>New option in pediatric</td>
</tr>
<tr>
<td>Portable equipment</td>
<td>Learning curve</td>
</tr>
<tr>
<td>Less invasive</td>
<td></td>
</tr>
<tr>
<td>Less expensive</td>
<td></td>
</tr>
</tbody>
</table>
Mechanical heart

- Scarce resource: non-availability of organs
- Alternative to heart transplant
- Montreal, Dec 2006
 - 1st HeartMate II mechanical heart
 - Clinical trial by the manufacturer Thoratec
 - Long term device – 10 years
 - 65 year-old man with heart failure
Thank you!