Glucose Metabolism in Sepsis

Susan Bratton, MD, MPH
Professor of Pediatrics,
Salt Lake City, UT, USA
Hyperglycemia & Sepsis

- Adaptive response
 - Maintains intravascular volume
 - Increases energy delivery to vital organs

- For some processes in critical care, supra physiologic responses are associated with improved survival......
Many studies have shown worse morbidity / mortality for adults with hyperglycemia

- Stroke (Stroke 2001; 32: 2425-32)
- Burns (J Trauma 2001; 51: 540-4)
- Trauma (J Trauma 2004; 56: 1059-62)
- MI (Lancet 2000; 355: 773-8)
Hyperglycemia & Worse Outcome Critically Children

- TBI (Cochran A Trauma 2003;55:1035-8)
Trials to Improve Nitrogen Balance: GH

- Septic adults
 - rh GH 0.1 mg/kg/day for 8 days improved nitrogen balance (Ann Surg 1992; 216:648)
 - Associated with ↑ insulin resistance

- Critically ill adults: 2 RCTs
 - rh GH 5.3 mg or 8 mg daily (based on weight)
 - Associated with ↑ insulin resistance & mortality
 - ↑ mortality vs. placebo (39% vs. 20% and 44% vs. 18%) (N Engl J Med 1999; 341: 785-792)
Randomized Trial: Hyperglycemia treated in SICU

- Tight Glucose Control (80-11 vs 180-210 mg/dL)
 - ↓ sepsis in ICU (7.8% vs. 4.8%)
 - ↓ dialysis (8.2% vs. 4.8%)
 - ↓ ventilation > 14 days (11.9% vs. 7.5%)
 - ↓ polyneuropathy (51.9% vs. 28.7%)
 - ↓ mortality (8.0% vs. 4.6%)
Adult MICU Trial – Less Dramatic

- ↓ new kidney disease
 - 8.9% vs. 5.9%

- ↓ time of mechanical ventilation
 - HR 1.21; 95% CI 1.02-1.44

- ↓ mortality for those >3 day stay
 - 52.5% VS 43.0
Stress Physiology \(\rightarrow\) Hyperglycemia

- Trials in 1980’s with healthy subjects replicated critical illness hyperglycemia
 - Gave glucose counter regulatory hormones
 - ↑ Glucose production 100%
 - ↑ Blood Glucose 60-80%
- Hyperglycemia due to production increases primarily rather than ↓ extraction
Stress Physiology, Sepsis and Treatment

↑ Glucagon
↑ Catecholamines
↑ GH & Cortisol

↑ Insulin
↑ Insulin Resistance

↑ Cytokines (TNFα, IL-1, IL-6)

Administration of Dextrose, Steroids, Catecholamines

↑↑↑ [glu]
Catecholamines

- **Epinephrine**
 - Gluconeogenesis
 - Glycogenolysis
 - Direct suppression of insulin secretion
 - Skeletal muscle & liver
 - Lipolysis \rightarrow ↑ FFA

- **Norepinephrine**
 - Gluconeogenesis
 - Less effect than epinephrine
 - Glycogenolysis
 - Very weak in liver
 - Lipolysis \rightarrow ↑ FFA
Glucocorticoids

- Diurnal variation lost with stress
- ↑ CRH & ACTH
- Cytokines modulate cortisol production & receptor number & affinity
- Cortisol binding protein ↓ due to elastase activity → ↑ free cortisol
- However, response is variable in septic shock
Growth Hormone

- Normal pulsatile secretion
- Stress \uparrow peak & pulse frequency
- Tissue expression \rightarrow \downarrow IGF-1, IGFBP-3, & its Acid Labile Subunit
- Usual state - peripheral resistance
Glucose Transporters

- Lipid bilayers
- Transport systems identified
- Sodium linked transporters
 - intestine & kidney
 - against concentration gradient
- GLUT transporters
 - facilitated diffusion
 - down concentration gradients
Glucose Transporters GLUT1-5

- **GLUT1**
 - Concentrated in brain, RBC, endothelial cells

- **GLUT2**
 - Kidneys, liver, small bowel, pancreas

- **GLUT3**
 - Neurons, placenta

- **GLUT4** - *insulin responsive glucose transporter*
 - Skeletal muscle, cardiac muscle, adipose tissue

- **GLUT5**
 - Fructose transporter, low affinity for glucose
Stress-Induced Changes in Glucose Homeostasis

- Impaired uptake - GLUT4 and insulin receptors
 - Immobilization
 - Glucocorticoids, GH, catecholamines
 - LPS, TNF-α
 - Palmitate (FFA)
 - GH ↓ insulin receptors

- Increased uptake - liver, brain, endothelial cells
 - Up regulation of GLUT1 & 3 (non insulin dependent transport)

- Increased hepatic glucose production
Clin Chest Med 1996; 17:249
Lactate Metabolism & Production

- Normally lactate dehydrogenase maintains lactate/pyruvate 20:1
 - ↓ sepsis can decrease 1:1 due to both delayed clearance and decrease enzyme activity
 - However, septic adults showed ↑ lactate due to ↑ glucose production rather than PDH inhibition (Ann Surg 1996; 224: 97-104)

- WBC metabolism largely anaerobic
Lactic Acidosis & Sepsis

HYPERLACTATEMIA

- **↑ lactate production**
 - Anaerobic
 - Tissue hypoxia
 - Increased WBC metabolism
 - Aerobic
 - Endogenous production
 - Inflammation mediated:
 - Accelerated glycolysis
 - Inhibition of pyruvate dehydrogenase

- **↓ lactate clearance**
 - Impaired liver function
 - Decreased liver blood flow
Hyperglycemia - Reactive Oxygen Species

- ↑ [glu] → ↑ mitochondrial resting potential → generation of ROS
- [glu] also involved in NADPH pathway in pentose phosphate pathway
ROS

☐ Concentrated in
 ■ Phagocytic cells
 □ macrophages, Kupffer cells & PMNs
 ■ Epithelial cells
 □ enterocytes, hepatocytes, alveolar & renal tubular cells

☐ Leads to mitochondrial damage
Intracellular hyperglycemia transported by GLUT1-3 (Brain, gut, liver, kidneys, immune cells) exacerbate mitochondrial superoxide formation.

- Superoxide + NO \rightarrow ↑ peroxynitrite
- Peroxinitrites \rightarrow tyrosine nitration of proteins to alter function
- Mitochondrial damage likely leads to MSOF
Lipid & Muscle Metabolism during Stress

Diagram:
- SKELETAL MUSCLE
 - Proteolysis
- PERIPHERAL TISSUES
 - Glycolysis
 - Lactate
- LIVER
 - Gluconeogenic substrates
 - Glucose
 - Glycogen
 - Systemic glucose
- ADIPOCYTE
 - Lipolysis
 - Counterregulatory hormones
 - Insulin
 - Alanine
 - Glycero
Lipid metabolism

- ↑ FFA
- ↑ TG
- ↓ HDL, LDL
- Impaired intracellular transport of long chain FFA esters
Effects of Increased Intracellular [Long Chain FFA Esters]

\uparrow [long-chain fatty acid esters]

- PDH
 - Uncouples oxidative phosphorylation
 - \uparrow [lactate]

- NADH pathway
 - \downarrow gluconeogenesis

- Δ ketogenesis
 - \uparrow β-hydroxybuterate

- ROS
Muscle Catabolism

- Muscle catabolism \rightarrow alanine \rightarrow glutamine
 - Muscle [glutamine] \downarrow 80-90% with severe stress
- \uparrow gluconeogenesis
Immune Function & Hyperglycemia

- ↑ CRP
- Glycosylates immunoglobulins
- ↓ Granulocyte function
 - Impaired adhesion, chemotaxis, respiratory burst, superoxide, intracellular killing
- ↓ Complement function
 - Micro organism attachment impaired
 - Impaired opsonization
Other effects of Hyperglycemia

- Vascular endothelial dysfunction \rightarrow ↑ NO
- Hypercoagulable state
 - Platelet activation, inhibition of fibrinolytic system, altered clotting factors
Hyperglycemia Treatment

- Difficult to distinguish effects of:
 - Insulin dependent [glu]
 - Decreased [gluc]
 - Finney et al (JAMA 2003; 290: 2041-2047) analysis suggested [gluc] control, rather than increased insulin dosing, associated with survival
Insulin therapy for stress hyperglycemia

- **Muscle**
 - ↑ mRNA for GLUT4 in muscle
 - ↑ mRNA for hexokinase II
 - Rate limiting enzyme of intracellular insulin stimulated glucose metabolism

- **Liver**
 - No effect on expression of phosphoenolpyruvate carboxykinase
 - Rate limiting enzyme for glycogen synthesis
 - Preserves mitochondrial ultrastructure
 - Restores lipid profile
 - ↓ TG, ↑ HDL & LDL

- **Immune System**
 - ↓ CRP
Glucose & Pediatric Septic Shock

- Branco et al. (Pediatric Crit Care Med 2005; 6: 470-472)
- Prospective cohort study of fluid-refractory pediatric septic shock
- N=57
- Peak mean [glu] 214 mg/dL (+/-98)
- Overall mortality: 49%
- [Glu] associated with death
 - Mean 262 vs. 168 mg/dL
- Cutoff of 178 mg/dL predictive of mortality
 - 28% vs. 71%
Insulin levels and meningococcal sepsis

- Van Waardenburg et al (J Clin Endocrinol Metab 2006; 91: 3916-3921)
 - Prospective cohort study 16 children with meningococcal sepsis (6 without shock-treated with only fluid boluses)
 - Measured blood glucose for 3 days, hormones that regulate [glu], cytokines
Van Waardenburg Study

- Peak [glu] ↑ in shock patients
- Mean [glu] ↑ on day 2 & 3 in shock patients
- Plasma [insulin] ↓ in shock patients
 - 7.2 vs. 19 mU/L (both within normal range)
- Plasma insulin/[gluc] ↓ in shock patients
 - 1.1 vs. 3.4
- Cortisol, GH, glucagon, IGF-1 normal range & not different by group
- TNF & CRP ↑ in shock patients
Glucose metabolism: Pediatric & Adult Septic Shock

- Insufficient insulin response to hyperglycemia in pediatric shock
 - Insulin deficiency differs from adult patients with insulin resistance
- Higher cytokine levels may have a role in insulin suppression
Sepsis in Children in 1995 (US)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual incidence: 0.56/1000</td>
<td></td>
</tr>
<tr>
<td>Highest in infants: 5.2/1000</td>
<td></td>
</tr>
<tr>
<td>VLBW or other underlying disease</td>
<td></td>
</tr>
<tr>
<td>Respiratory infection & bacteremia most common</td>
<td></td>
</tr>
<tr>
<td>Mortality: 10.3%</td>
<td></td>
</tr>
<tr>
<td>■ 4400 deaths per year</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Glucose regulation is complicated
- Children may differ by age with less insulin resistance compared to adults
 - Developmental changes may be important as infants are high risk group
- Mortality lower - more difficult to show benefit of insulin or other therapies