Active Rehabilitation and Physical Therapy During Extracorporeal Membrane Oxygenation While Awaiting Lung Transplantation

David A Turner MD1, David Zaas MD MBA2, Kyle J Rehder MD1, W Lee Williford RRT3, Shu Lin MD PhD4, R Duane Davis MD4, Ira M Cheifetz MD FCCM FAARC1,3

Pediatric Critical Care Medicine1, Pulmonary, Allergy, and Critical Care Medicine2, Respiratory Care Services3, Cardiovascular and Thoracic Surgery4

Duke University Medical Center
Duke Children’s Hospital
Durham, North Carolina, USA
Lung Transplantation

Lung transplantation is an important therapeutic option for many severe respiratory diseases associated with a high mortality.

Indications for Lung Transplantation

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>2008 Transplants (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic Pulmonary Fibrosis</td>
<td>33.5</td>
</tr>
<tr>
<td>Emphysema/COPD</td>
<td>28.6</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>13.7</td>
</tr>
<tr>
<td>Alpha – 1 – Antitrypsin Deficiency</td>
<td>2.9</td>
</tr>
<tr>
<td>Idiopathic Pulmonary Arterial Hypertension</td>
<td>1.8</td>
</tr>
<tr>
<td>Congenital Disease</td>
<td>0.3</td>
</tr>
</tbody>
</table>

U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients 2009 Annual Report
ECMO and Lung Transplantation

• Patients with end-stage respiratory disease are at a high risk for critical illness, thus limiting their transplant candidacy.

• Extracorporeal membrane oxygenation (ECMO) may be necessary as a bridge to transplantation in the most critically ill of these patients who become refractory to maximal conventional therapies.

• Poor outcomes have been reported with ECMO as a pre-operative bridge to lung transplantation.
ECMO and Lung Transplantation

• Underlying muscle strength and deconditioning likely contribute to low survival rates in patients transplanted from ECMO.

• To ameliorate the negative effects of pre-transplant deconditioning, our multidisciplinary team developed a strategy to actively rehabilitate patients while using ECMO as a bridge to transplantation.
Methods

• In our Pediatric Intensive Care Unit, we initiated an ambulatory ECMO program for an adolescent with end-stage cystic fibrosis and respiratory failure.

• The clinical care team determined that ECMO was necessary to allow for pre-transplant rehabilitation.

• Program development was initiated by a multidisciplinary team including pediatric intensivists, lung transplant pulmonologists, respiratory therapists, ECMO specialists, nurses, occupational therapists, and physical therapists.
Patients and Main Results

• We describe two patients (ages 17 and 24 years) with refractory respiratory failure due to end-stage cystic fibrosis who had previously been denied lung transplantation at their referring centers.

• Each patient:
 – was cannulated for venovenous (VV) ECMO with a double lumen internal jugular venous cannula (Avalon Labs; Rancho Domingo, CA).
 – underwent rehabilitation while on VV ECMO awaiting transplant.
 – received tracheostomy to facilitate weaning of sedation and mechanical ventilation within 24 hours of ECMO cannulation.
 – ambulated while on ECMO within 1 week.
 – underwent successful bilateral sequential lung transplantation and was subsequently decannulated from ECMO within hours.
 – was discharged from the ICU less than one week post-transplant.
 – was discharged home without the need for transition to a rehabilitation facility (at 31 and 32 days post-transplant).
Ambulation while on ECMO
Discussion

• In the setting of lung transplantation, deconditioning may be an important cause of both morbidity and mortality.
• Pre-transplant conditioning may be improved via rehabilitation and active conditioning in critically ill patients on ECMO.
• A potential mechanism to enhance the mobility of ECMO patients is single vessel internal jugular vein cannulation.
• To actively rehabilitate and ambulate patients being treated with ECMO, substantial planning is required by a dedicated multidisciplinary team (including physicians, nurses, respiratory therapists, ECMO specialists, physical therapists, and occupational therapists).
Conclusions

• Ambulation on ECMO can be safe in critically ill patients awaiting lung transplantation.

• Pre- and post-operative morbidity and mortality may be decreased when ambulatory ECMO is used as a bridge to lung transplantation.

• Rehabilitation and re-conditioning on ECMO may decrease ICU length of stay following lung transplantation.

• This innovative approach to ambulation and activity on ECMO has potential implications for the management of all critically ill ECMO patients.

• Future investigation is needed to further assess the impact of increased activity and active physical therapy on the morbidity and mortality of ECMO patients.
References

